Wind Energy Harvesting with a Kite

Antonin Bavoil', Jean-Baptiste Caillau’, Lamberto Dell’Elce?, Alain Néme?, Jean-Baptiste Leroux®

1: Université Cote d’Azur, CNRS, Inria, LJIAD
2: Inria
3: ENSTA Bretagne, iRDL

Julia and Optimization Days 2024
Toulouse, 29 October 2024

- UNIVERSITE COTE D'AZUR @ &,«yzzb/-
S ENSTA (ROL

BRETAGNE

Institut de Recherche Dupuy de Léme




Kite Electrical Energy Production (KEEP)

KEEP is born as a follow up of Beyond the Sea®.

Idea: generate (on land) electricity with a kite.

10x less material than a wind turbine, soft.

Portable source of power in remote areas.

https://www.dailymotion.com/video/x5fwyox

— Islands, military.

Le Télégramme




Kite Electrical Energy Production (KEEP)

* Approximately the same power as a wind turbine.
e Currently: 10% of the production used for control.

* Previous works:
* U. Ahrens, M. Diehl, R. Schmehl. Airborne Wind Energy. Springer, 2013,

* U. Fechner et al. Dynamic Model of a Pumping Kite Power System,
Pergamon, 2015.

« Startup Kitepower, by J. Peschel and R. Schmehl, since 2016

— (Can we generate a good amount of electricity while
requiring close to no control?




Wind Energy Harvesting with a Kite

I. Modelling
II. Numerical Results

III. Optimization problem



Modelling

t = 0.00 s / 20.00 s

— The kite does eights in the sky to swing the arm left to
right as much as possible, without tangling the lines. 5



Modelling

Replacing the control with an algebraic constraint Base of the cone

0, + AO
.. ) D A
* As a preliminary study, we replace the control with a . L
geometric constraint. S "
>
— The kite will stay on an 8-based cone centered on 0. b= Agfo'_' Ao ) o+ Ag

* Spherical coordinates in the inertial frame Oxyz: 4

06

0 =6, + ABsin(27)

Set of (R, 6, @) s.t. @ = Qo+ Ap sin(1)

R = R(a, 7).

— Like a railway track guiding a train. 6



Modelling

Coordinates

» State of the system:
* a: 1D angle between the arm and the x-axis,

* (R,7): 2D position of the kite on the 8-based
cone.

Base of the cone

We can do better: get R through the intersection
of a sphere (A, r) with a line:

— —\ 2
R(a,7) = f-OA+J(f-OA) + 12 — 0A2.

— (a, 1) is enough to determine the state of the system.



Modelling

Compute the dynamics

* Dynamics: conservation of linear & angular momentum.

* All forces apply at point K (the kite):
* Gravity,
* Aerodynamical forces,
e Line tension,

* Fictitious cone force.




Modelling
Gravity

* Gravity force = weight of the kite + weight of the lines:

—_—

Fgrav = —g(Myite + Miines)Z-



Modelling

Aerodynamical forces
. A ren . :—)=—>_—> 1 . o . . ,/,, \\\\
pparent wind: Wapp, = v —w  (velocity — wind) { Conoratos ™
* Aerodynamical force on the Kkite:
1 2 A B
Faeroxite = ) S pair”Wapp” (CLzy, + CpXxy).

e Aerodynamical force on the lines, applied at point K:

_ 1 nbl r dl N S
Faero,lines = — ETPair”Wapp — (- V)F

2 N
CDl -

Faero — Ijerokite T Faero,lines-
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Modelling

Line tension & conservation of angular momentum

* Conservation of angular momentum of the arm gives:
[oqit = —torque(a) + Fiension T - (ZAXO—A)

———  I,qa—torque(q) , - ) . .
* Hence Fiopsion = eqf on where @ is obtained by solving the dynamics cf. next slide.

Torque from arm to generator
C’max =

' I'tension

torque
I
I
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Modelling

Replacing the control with an algebraic constraint

 How? Add a fictitious force F.ope that would result from a control.

 No friction with the cone:
Circle-based cone

——— 00K ——— 90K

https://mathworld.wolfram.com/Cone.html
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Modelling

Computing the explicit dynamics

Recall that F.ope -aai: = 0 and F.gpe -aaLTK = 0.

Conservation of linear momentum gives: m

—

dt

t
(@ 1)

—-— dv
Hence Foone = m dc Fgrav — Faero

Solve A(u) it = b(u,01) for ii.

= Feone T Fgrav + Fyero * Ftension-

t

&

13



First Numerical Results
Solving the dynamics

* Assemble A(u) and b(u, 1) using forward auto. diff. for exact, fast & maintainable derivatives:

julia> kite speed = jvp(u -> OK(u, params), u, du)

* Runge-Kutta 5(4) (Tsitouras 2011):

Power generation over time

10000 |+
6 7500 |
N 4
5000 |
2
10
5 2500 |
® 0
-5
1 1 0 C 1 1 1 1

0.0 2.5 5.0 7.5 10.0
t (s)

Power (W)

x

Power (W)

Average power = 3919 W

— Cyclic behavior: toward a limit cycle...
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First Numerical Results
Limit Cycle

 Define a Poincaré section at T = 0 [2m] where the cycle begins (arbitrary).

* Dense ODE output & continuous callback allow us to save the state every time it crosses one of
these hyperplanes:

lteration | At = t(z = 27) — t(z = 0) (seconds) 2 limit cycles

1 2.7857519406370397 0.50

ey Cle OK <
—=CyCle KO —

2 3.0933710067285087 0.25F
3 3.0930984474625856 % 0.00 |

7 3.093098056921132 —0.50
8 3.0930980569206064 0

— 2 limit cycles, interested in the one with T < 0 that does not tangle the lines.
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First Numerical Results
Equilibriums

Any initial condition could fall into either limit cycles...
e Set u = 0 and find u such that it = 0,

e The 2 limit cycles, T > 0 and 7 < 0, are separated by equilibriums,

|

8 equilibriums

 From an equilibrium, set 7 < 0 to fall in the good cycle,

* Integrate for 8 cycles = guaranted limit cycle.



Optimization
Problem: Maximize the Average Power over a limit cycle

* Augment the state with W, the total work of the generator :
W = @ torque(a) (= P(t))
— Compute the energy generated while solving the ODE instead of a posteriori

Optimization problem:
o Maximize W(tf)/tf
o Over the design parameters: line length r € [11hin, Tmax] @nd moment of inertia of the arm I € [Iyin, Imax]

o Such that a(t;) = ap, ©(0) =0, =(tf) = —2m, a(tr) = ao, (tr) = 70
Where t; and the initial condition (ay, 0, &, 7o) are to be determined for each (r,I)

And a(tf),l'(tf), d(tf),r'(tf) and W(tf) are obtained by solving the ODE.
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Optimization

Problem: Maximize the Average Power over a limit cycle

Most implicit

optvar = (r, I)

function objective(r, I)
determine tf, x0 such that

they produce a limit cycle
integrate the ODE

return W(tf)/tf
end

» A function gives the limit
cycle for (r, I)

» An ODE solver gives W(tf)

> No nonlinear constraints

More explicit

optvar = (r, I, tf, a0, doo,
dto, Wf)

function objective(optvar)
return optvar.W/tf
End

function nlconstraints(optvar)

a(tf) - oo
tf - 21
da(tf) - doo
dt(tf) - dte
W(tf) - Wf

end

» An ODE solver gives (tf)

> 5 nonlinear constraints

Most explicit

optvar = (r, I, tf, 00, do@, dto,

o[ 2:N+1], t[2:N+1], da[2:N+1],
dt[2:N+1], W[2:N+1])

function objective(optvar)
return W[N+1]/tf

end

function nlconstraints(optvar)

x(i+l) - xi - h*f(x(i)), i=1:N

T[N+1] - 2m

oa[N+1] - a©

da[N+1] - dao

dt[N+1] - dto
end

» Implement own fixed-step
ODE solver

» N5 nonlinear constraints
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Optimization
Summary

* Define a dynamics ForwardDiff.jl, ComponenArrays.jl

* Solve the ODE problem and realize it converges toward a limit cycle OrdinaryDiffEq.jl,
Plots.jl

* Find the equilibriums of the system to systematically compute the correct limit cycle
DiffEqCallbacks.jl, NonlinearSolve.jl

* Define an optimization problem and initialize on a limit cycle, where constraints are satisfied
GCMAES.jl1, ADNLPModels.jl & NLPModelsIpopt.jl

 What’s next 7
o Sensibility analysis for guiding the engineering of a prototype
o Moving forward to an optimal control model, without the cone constraint

o Make the code publicly available



Annex 1: Basis vectors related to the local wind

* Apparent wind perpendicular to the lines:

. Wapp — (7 - V)T
ew—l

N N

|Wapp — (- V)T

(a) (b)

Kite symmetry
plane

» Basis of the apparent wind:

—

— Wapp
Xy = —
" ”Wapp ”

Yw =T X e,

Trailing

Zy = Xy X Yy

Leading

/ // edge W, Kite lines
. 20




Annex 2: Forward Automatic Differentiation

f(wy,wy) = sin(wq) + wyw;

. Y
Define € st. €2 =0

sin(xy) + x1x5 +
A dual number is a + be (x, + cos(xq))er + x1&

Define the base operations:

* (@a+be)+(c+de)=(a+c)+(b+d)e sin(x;) + cos(x;) &
* (a+ be)(c+de) =ac+ (ad + bc)e

X1Xy + X081 + X1&

* sin, cos, exp, etc. are defined using +, X, /, etc.

X, + &

 flx+e) = f(x) +ef () 1t &

— See ForwardDiff.jl

w1 w2
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