
Wind Energy Harvesting with a Kite

Antonin Bavoil¹, Jean-Baptiste Caillau¹, Lamberto Dell’Elce², Alain Nême³ , Jean-Baptiste Leroux³

1

1: Université Côte d’Azur, CNRS, Inria, LJAD
2: Inria
3: ENSTA Bretagne, iRDL

Julia and Optimization Days 2024

Toulouse, 29 October 2024

Kite Electrical Energy Production (KEEP)

2

https://www.dailymotion.com/video/x5fwyox

• KEEP is born as a follow up of Beyond the Sea®.

• Idea: generate (on land) electricity with a kite.

• 10x less material than a wind turbine, soft.

• Portable source of power in remote areas.

➝ Islands, military.

Kite Electrical Energy Production (KEEP)

• Approximately the same power as a wind turbine.

• Currently: 10% of the production used for control.

• Previous works:
• U. Ahrens, M. Diehl, R. Schmehl. Airborne Wind Energy. Springer, 2013,
• U. Fechner et al. Dynamic Model of a Pumping Kite Power System,

Pergamon, 2015.
• Startup Kitepower, by J. Peschel and R. Schmehl, since 2016

➝ Can we generate a good amount of electricity while
requiring close to no control?

3

https://www.iksurfmag.com/reviews/kites/north-kiteboarding-evo-6m-2013/

Wind Energy Harvesting with a Kite

I. Modelling

II. Numerical Results

III. Optimization problem

4

Modelling

➝ The kite does eights in the sky to swing the arm left to
right as much as possible, without tangling the lines. 5

Modelling

• As a preliminary study, we replace the control with a
geometric constraint.

➝ The kite will stay on an 8-based cone centered on 𝑂.

• Spherical coordinates in the inertial frame 𝑂𝑥𝑦𝑧:

𝜃 = 𝜃! + Δ𝜃 sin 2𝜏

Set of (𝑅, 𝜃, 𝜑) s.t. 𝜑 = 𝜑! + Δ𝜑 sin 𝜏

𝑅 = 𝑅(𝛼, 𝜏).

➝ Like a railway track guiding a train. 6

Replacing the control with an algebraic constraint

Modelling

• State of the system:
• 𝛼: 1D angle between the arm and the x-axis,
• (𝑅, 𝜏): 2D position of the kite on the 8-based

cone.

We can do better: get 𝑅 through the intersection
of a sphere (A, r) with a line:

𝑅 𝛼, 𝜏 = 𝜏̂ ⋅ OA + 𝜏̂ ⋅ OA
"
+ 𝑟" − OA".

7

Coordinates

𝐴 𝑟

𝑅? +

➝ (𝛼, 𝜏) is enough to determine the state of the system.

Modelling

• Dynamics: conservation of linear & angular momentum.

• All forces apply at point 𝐾 (the kite):
• Gravity,
• Aerodynamical forces,
• Line tension,
• Fictitious cone force.

8

Compute the dynamics

ArmGenerator

Lines

KiteWind

<𝑥

<𝑦

𝑧̂

𝛼

𝑅

𝑂 𝐴

𝐾

Modelling

• Gravity force = weight of the kite + weight of the lines:

𝐹#$%& = −𝑔 𝑚'()* +𝑚+(,*- 𝑧̂.

9

Gravity

Modelling

• Apparent wind: 𝑤%.. = 𝑣⃗ − 𝑤 (velocity – wind).

• Aerodynamical force on the kite:

𝐹%*$/,'()* = −
1
2
𝑆 𝜌%($ 𝑤%..

" 𝐶1𝑧̂2 + 𝐶3 <𝑥2 .

• Aerodynamical force on the lines, applied at point 𝐾:

𝐹%*$/,+(,*- = −
1
2
𝑛𝑏4 𝑟 𝑑4

3
𝜌%($ 𝑤%.. − 𝑟̂ ⋅ 𝑣⃗ 𝑟̂ "𝐶34 𝑒̂2.

𝐹%*$/ = 𝐹%*$/,'()* + 𝐹%*$/,+(,*-.

10

Aerodynamical forces

Modelling

• Conservation of angular momentum of the arm gives:
𝐼*5𝛼̈ = −torque 𝛼̇ + 𝐹)*,-(/, 𝑟̂ ⋅ 𝑧̂×OA .

• Hence 𝐹)*,-(/, =
6!"8̈9)/$5:* 8̇

=̂⋅(@̂×BC) 𝑟̂, where 𝛼̈ is obtained by solving the dynamics cf. next slide.

11

Line tension & conservation of angular momentum

𝐹'()*+,)

𝑟̂

Modelling

• How? Add a fictitious force 𝐹E/,* that would result from a control.

• No friction with the cone:

𝐹E/,* ⋅
FGH
FI

= 0 and 𝐹E/,* ⋅
FGH
FJ

= 0.

12

Replacing the control with an algebraic constraint

https://mathworld.wolfram.com/Cone.html

𝑅
𝜏

Circle-based cone

Modelling

• Recall that 𝐹E/,* ⋅
FGH
FI

= 0 and 𝐹E/,* ⋅
FGH
FJ

= 0.

• Conservation of linear momentum gives: 𝑚 KL
KM
= 𝐹E/,* + 𝐹#$%& + 𝐹%*$/ + 𝐹)*,-(/,.

• Hence 𝐹E/,* = 𝑚 KL
KM
− 𝐹#$%& − 𝐹%*$/ − 𝐹)*,-(/,. Linear in 𝐮̈ = 𝛼̈, 𝜏̈ ∈ ℝ".

• Solve 𝐴 𝐮 𝐮̈ = 𝑏 𝐮, 𝐮̇ for 𝐮̈.

13

Computing the explicit dynamics

(𝛼̈, 𝜏̈) 𝛼̈

First Numerical Results

• Assemble 𝐴(𝐮) and 𝑏(𝐮, 𝐮̇) using forward auto. diff. for exact, fast & maintainable derivatives:
julia> kite_speed = jvp(u -> OK(u, params), u, du)

• Runge-Kutta 5(4) (Tsitouras 2011):

➝ Cyclic behavior: toward a limit cycle…

14

Solving the dynamics

First Numerical Results

• Define a Poincaré section at 𝜏 ≡ 0 [2𝜋] where the cycle begins (arbitrary).

• Dense ODE output & continuous callback allow us to save the state every time it crosses one of
these hyperplanes:

➝ 2 limit cycles, interested in the one with 𝜏̇ < 0 that does not tangle the lines.

15

Limit Cycle

Iteration 𝚫𝐭 = 𝒕 𝝉 = 𝟐𝝅 − 𝒕(𝝉 = 𝟎) (seconds)

1 2.7857519406370397

2 3.0933710067285087

3 3.0930984474625856

... …

7 3.093098056921132

8 3.0930980569206064

First Numerical Results

Any initial condition could fall into either limit cycles…

• Set 𝐮̇ = 0 and find 𝐮 such that 𝐮̈ = 0,

• The 2 limit cycles, 𝜏̇ > 0 and 𝜏̇ < 0, are separated by equilibriums,

• From an equilibrium, set 𝜏̇ < 0 to fall in the good cycle,

• Integrate for 8 cycles ➝ guaranted limit cycle.

16

Equilibriums

Optimization

• Augment the state with 𝑊, the total work of the generator :
𝑊̇ = 𝛼̇ torque(̇𝛼) (= 𝑃 𝑡)

➝ Compute the energy generated while solving the ODE instead of a posteriori

Optimization problem:
o Maximize 𝑊 𝑡! /𝑡!
o Over the design parameters: line length 𝑟 ∈ [𝑟"#$, 𝑟"%&] and moment of inertia of the arm 𝐼 ∈ [𝐼"#$, 𝐼"%&]
o Such that 𝛼 𝑡! = 𝛼', 𝜏 0 = 0, 𝜏 𝑡! = −2𝜋, 𝛼̇ 𝑡! = 𝛼̇', 𝜏̇ 𝑡! = 𝜏̇'

Where 𝑡N and the initial condition (𝛼!, 0, 𝛼̇!, 𝜏̇!) are to be determined for each (𝑟, 𝐼)

And 𝛼 𝑡N , 𝜏 𝑡N , 𝛼̇ 𝑡N , 𝜏̇ 𝑡N and 𝑊(𝑡N) are obtained by solving the ODE.

17

Problem: Maximize the Average Power over a limit cycle

Optimization

Most implicit

optvar = (r, I)

function objective(r, I)
determine tf, x0 such that

they produce a limit cycle
integrate the ODE
return W(tf)/tf

end

ØA function gives the limit
cycle for (r, I)

ØAn ODE solver gives W(tf)

ØNo nonlinear constraints

18

Problem: Maximize the Average Power over a limit cycle

More explicit

optvar = (r, I, tf, α0, dα0,
dτ0, Wf)

function objective(optvar)
return optvar.W/tf

End

function nlconstraints(optvar)
α(tf) – α0
τf – 2π
dα(tf) – dα0
dτ(tf) – dτ0
W(tf) – Wf

end

ØAn ODE solver gives _(tf)

Ø 5 nonlinear constraints

Most explicit

optvar = (r, I, tf, α0, dα0, dτ0,
α[2:N+1], τ[2:N+1], dα[2:N+1],
dτ[2:N+1], W[2:N+1])

function objective(optvar)
return W[N+1]/tf

end

function nlconstraints(optvar)
x(i+1) - xi - h*f(x(i)), i=1:N
τ[N+1] – 2π
α[N+1] - α0
dα[N+1] - dα0
dτ[N+1] - dτ0

end

Ø Implement own fixed-step
ODE solver

ØN+5 nonlinear constraints

Optimization

• Define a dynamics ForwardDiff.jl, ComponenArrays.jl

• Solve the ODE problem and realize it converges toward a limit cycle OrdinaryDiffEq.jl,
Plots.jl

• Find the equilibriums of the system to systematically compute the correct limit cycle
DiffEqCallbacks.jl, NonlinearSolve.jl

• Define an optimization problem and initialize on a limit cycle, where constraints are satisfied
GCMAES.jl, ADNLPModels.jl & NLPModelsIpopt.jl

• What’s next ?
o Sensibility analysis for guiding the engineering of a prototype
o Moving forward to an optimal control model, without the cone constraint
o Make the code publicly available 19

Summary

Annex 1: Basis vectors related to the local wind

20

• Apparent wind perpendicular to the lines:

!𝑒! =
𝑤"## − 𝑟̂ ⋅ 𝑣⃗ 𝑟̂
𝑤"## − 𝑟̂ ⋅ 𝑣⃗ 𝑟̂

• Basis of the apparent wind:

!𝑥! = −
𝑤"##
𝑤"##

!𝑦! = 𝑟̂ × !𝑒!
!𝑧! = !𝑥! × !𝑦!

Annex 2: Forward Automatic Differentiation

• Define 𝜀 st. 𝜀" = 0

• A dual number is 𝑎 + 𝑏𝜀

• Define the base operations:
• 𝑎 + 𝑏𝜀 + 𝑐 + 𝑑𝜀 = 𝑎 + 𝑐 + 𝑏 + 𝑑 𝜀
• 𝑎 + 𝑏𝜀 𝑐 + 𝑑𝜀 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 𝜀
• …

• sin, cos, exp, etc. are defined using +, ×, /, etc.

• 𝑓 𝑥 + 𝜀 = 𝑓 𝑥 + 𝜀𝑓′(𝑥)

➝ See ForwardDiff.jl

21

𝑥(+ 𝜀(

𝑥(+ 𝜀(

𝑥) + 𝜀)

𝑥(𝑥) + 𝑥)𝜀(+ 𝑥(𝜀)sin(𝑥() + cos 𝑥(𝜀(

sin(𝑥() + 𝑥(𝑥) +
𝑥) + cos 𝑥(𝜀(+ 𝑥(𝜀)

𝑓 𝑤O, 𝑤P = sin(𝑤O) + 𝑤O𝑤P

