
Wind Energy Harvesting with a Kite

Antonin Bavoil¹, Jean-Baptiste Caillau¹, Lamberto Dell’Elce², Alain Nême³ , Jean-Baptiste Leroux³

1

1: Université Côte d’Azur, CNRS, Inria, LJAD
2: Inria
3: ENSTA Bretagne, iRDL

FGS Conference on Optimization

Gijón, June 2024

Kite Electrical Energy Production (KEEP)

2

https://www.dailymotion.com/video/x5fwyox

• KEEP is born as a follow up of Beyond the Sea®

• Idea: generate (on land) electricity with a kite

• 10x less material than a wind turbine, soft

• Portable source of power in remote areas

➝ Islands, military

Kite Electrical Energy Production (KEEP)

• Approximately the same power as a wind turbine

• Currently: 10% of the production used for control

• Previous works:
• U. Ahrens, M. Diehl, R. Schmehl. Airborne Wind Energy. Springer, 2013.
• U. Fechner et al. Dynamic Model of a Pumping Kite Power System,

Pergamon, 2015

➝ Can we generate a good amount of electricity while
requiring close to no control ?

3

https://www.iksurfmag.com/reviews/kites/north-kiteboarding-evo-6m-2013/

Wind Energy Harvesting with a Kite

I. Modelling

II. Numerical Results

III. Optimization

4

Modelling

➝ The kite does eights in the sky to swing the arm left to
right as much as possible, without tangling the lines. 5

Modelling

• As a preliminary study, we replace the control with a
geometric constraint

➝ The kite will stay on an 8-based cone centered on 𝑂

• Spherical coordinates in the inertial frame 𝑂𝑥𝑦𝑧:

𝜃 = 𝜃! + Δ𝜃 sin 2𝜏

Set of (𝑅, 𝜃, 𝜑) s.t. 𝜑 = 𝜑! + Δ𝜑 sin 𝜏

𝑅 = 𝑅(𝛼, 𝜏)

➝ Like a railway track guiding a train 6

Replacing the control with an algebraic constraint

Modelling

• State of the system in the 3d space:
• 𝛼: 1D position of the tip of the arm (on a circle)
• (𝑅, 𝜏): 2D position of the kite (on the 8-based

cone)

We can do better: get 𝑅 through the intersection
of a sphere (A, r) with a line

𝑅 𝛼, 𝜏 = �̂� ⋅ OA + �̂� ⋅ OA
"
+ 𝑟" − OA"

7

Coordinates

𝐴 𝑟

𝑅? +

➝ (𝛼, 𝜏) is enough to determine the state of the system

Modelling

• How? Add a fictitious force 𝐹#$%& that would result from a control

• No friction with the cone:

𝐹#$%& ⋅
'()
'*

= 0 and 𝐹#$%& ⋅
'()
'+

= 0

8

Replacing the control with an algebraic constraint

https://mathworld.wolfram.com/Cone.html

𝑅
𝜏

Circle-based cone

Modelling

• Dynamics: conservation of linear & angular momentum

• All forces apply at point 𝐾 (the kite):
• Gravity
• Aerodynamical forces
• Line tension

9

Compute the dynamics

ArmGenerator

Lines

KiteWind

=𝑥

=𝑦

�̂�

𝛼

𝑅

𝑂 𝐴

𝐾

Modelling

• Gravity force = weight of the kite + ,
"
 weight of the lines

𝐹-./0 = −𝑔 𝑚123& +
1
2𝑚42%&5 �̂�

10

Gravity

Modelling

• Apparent wind: 𝑤/66 = �⃗� − 𝑤 (velocity – wind)

• Aerodynamical force on the kite

𝐹/&.$,123& = −
1
2
𝑆 𝜌/2. 𝑤/66

" (𝐶8�̂�9 + 𝐶: =𝑥9)

• Aerodynamical force on the lines, applied at point 𝐾

𝐹'()*,+,-(. = −
1
2
𝑛𝑏/ 𝑟 𝑑/

3 𝜌',) 𝑤'00 − �̂� ⋅ �⃗� �̂�
1
𝐶2/ �̂�3

11

Aerodynamical forces

𝐹'()* = 𝐹'()*,4,5(+ 𝐹'()*,+,-(.

Modelling

• Conservation of angular momentum of the arm gives:
𝐼&;�̈� = −torque �̇� + 𝐹3&%52$% �̂� ⋅ (�̂�×OA)

• Hence 𝐹3&%52$% =
<!">̈?3$.;@& >̇

Ĉ⋅(F̂×HI) �̂�, where �̈� is obtained by solving the dynamics cf. next slide

12

Line tension & conservation of angular momentum

𝐹5(-.,*-

�̂�

Modelling

• Recall that 𝐹#$%& ⋅
'()
'*

= 0 and 𝐹#$%& ⋅
'()
'+

= 0

• Conservation of linear momentum gives: 𝑚 KL
KM
= 𝐹#$%& + 𝐹-./0 + 𝐹/&.$ + 𝐹3&%52$%

• Hence 𝐹#$%& = 𝑚 KL
KM
− 𝐹-./0 − 𝐹/&.$ − 𝐹3&%52$%. Linear in �̈� = �̈�, �̈� ∈ ℝ"

• Solve 𝐴 𝐮 �̈� = 𝑏(𝐮, �̇�)

13

Computing the explicit dynamics

(�̈�, �̈�) �̈�

First Numerical Results

• Assemble 𝐴 and 𝑏 using forward auto. diff. for exact, fast & maintainable derivatives
julia> kite_speed = jacobian(u -> OK(u, params), u) • du

• RungeKutta54:

➝ Cyclic behavior: toward a limit cycle

14

Solving the dynamics

First Numerical Results

• Define a Poincaré section at 𝜏 ≡ 0 [2𝜋] where the cycle begins (arbitrary)

• Dense ODE output & continuous callback allow us to save the state every time it crosses one of
these hyperplanes:

➝ 2 limit cycles, interested in the one with �̇� < 0 that does not tangle the lines

15

Limit Cycle

Iteration 𝚫𝐭 = 𝒕 𝝉 = 𝟐𝝅 − 𝒕(𝝉 = 𝟎) (seconds)

1 2.7857519406370397

2 3.0933710067285087

3 3.0930984474625856

... …

7 3.093098056921132

8 3.0930980569206064

Optimization

• We define the following problem

1
𝑡N
\
!

M#

α̇(t) torque(�̇�(𝑡)) d𝑡 → max

Over (𝛼!, ̇𝛼!, ̇𝜏!, 𝑡N), 𝑝 ∈ ℝO×ℝP with 𝑛 the number of available parameters to optimize

With constraints:
• 𝛼 𝑡! = 𝛼", �̇� 𝑡! = ̇𝛼", �̇� 𝑡! = ̇𝜏", 𝜏 𝑡! = 𝜏" − 2𝜋
• Box constraints on the state

With final state obtained by the ODE solver

16

Problem: Optimize the Average Power over a limit cycle

𝑃(𝑡)

Optimization

• Augment ODE state :
• ODE: 𝛼, 𝜏, �̇�, τ̇ ➝ 𝛼, 𝜏, �̇�, �̇�,𝑊 with 𝑊 being the cumulated work done by the generator

With its associated differential equation �̇� = �̇� torque(�̇�)

• Augment optimization variables: (𝛼!, d𝛼!, d𝜏!, 𝑡N), 𝑝 ➝ (𝛼!, d𝛼!, d𝜏!, 𝑡N,𝑊N), 𝑝

➝ Maximize 𝑊N/𝑡N over (𝛼!, d𝛼!, d𝜏!, 𝑡N,𝑊N), 𝑝 ∈ ℝQ×ℝP with constraints:

• 𝛼 𝑡! = 𝛼", �̇� 𝑡! = ̇𝛼", �̇� 𝑡! = ̇𝜏", 𝜏 𝑡! = 𝜏" − 2𝜋

• The augmented constraint 𝑊! = 𝑊(𝑡!)

• Box constraints over the state

17

Augmentations

Optimization

• Gradients and Hessians of the constraints computed with automatic differentiation

• Initialization on the limit cycle, where constraints are satisfied

• Use Interior Point OPTimizer (IPOPT)

➝ Look for saturated box constraints

➝ perform a sensitivity analysis around the optimal point

18

Ongoing work

Conclusion

• Solve the ODE ➝ find the limit cycle ➝ optimize on the limit cycle, thanks to Julia tools

• Move forward to a controlled model, without the cone constraint

• Have an engineer build a prototype that would (in)validate our results through measurements

19K. Desenclos, 2022, Production d’électricité par voile de kite.

Annex 1: Basis vectors related to the local wind

20

• Apparent wind perpendicular to the lines:

!𝑒! =
𝑤"## − �̂� ⋅ �⃗� �̂�
𝑤"## − �̂� ⋅ �⃗� �̂�

• Basis of the apparent wind:

!𝑥! = −
𝑤"##
𝑤"##

!𝑦! = �̂� × !𝑒!
!𝑧! = !𝑥! × !𝑦!

Annex 2: Forward Automatic Differentiation

• Define 𝜀 st. 𝜀" = 0

• A dual number is 𝑎 + 𝑏𝜀

• Define the base operations:
• 𝑎 + 𝑏𝜀 + 𝑐 + 𝑑𝜀 = 𝑎 + 𝑐 + 𝑏 + 𝑑 𝜀
• 𝑎 + 𝑏𝜀 𝑐 + 𝑑𝜀 = 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 𝜀
• …

• sin,	cos,	exp,	etc.	are	defined using +, ×, /, etc.

• 𝑓 𝑥 + 𝜀 = 𝑓 𝑥 + 𝜀𝑓′(𝑥)

➝ See ForwardDiff.jl

21

𝑥# + 𝜀#

𝑥# + 𝜀#

𝑥$ + 𝜀$

𝑥#𝑥$ + 𝑥$𝜀# + 𝑥#𝜀$sin(𝑥#) + cos 𝑥# 𝜀#

sin(𝑥#) + 𝑥#𝑥$ +
𝑥$ + cos 𝑥# 𝜀# + 𝑥#𝜀$

𝑓 𝑤Y, 𝑤1 = sin(𝑤Y) + 𝑤Y𝑤1

