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Kite Electrical Energy Production (KEEP)

KEEP is born as a follow up of Beyond the Sea®

Idea: generate (on land) electricity with a kite

10x less material than a wind turbine, soft

Portable source of power in remote areas

https://www.dailymotion.com/video/x5fwyox

— Islands, military

Le Télégramme




Kite Electrical Energy Production (KEEP)

* Approximately the same power as a wind turbine
e Currently: 10% of the production used for control

* Previous works:
* U. Ahrens, M. Diehl, R. Schmehl. Airborne Wind Energy. Springer, 2013.

* U. Fechner et al. Dynamic Model of a Pumping Kite Power System,
Pergamon, 2015

— (Can we generate a good amount of electricity while
requiring close to no control 7



Wind Energy Harvesting with a Kite

I. Modelling
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III. Optimization



Modelling

t = 0.00 s / 20.00 s

— The kite does eights in the sky to swing the arm left to
right as much as possible, without tangling the lines. 5



Modelling

Replacing the control with an algebraic constraint Base of the cone

0, + AO
. . D A
* As a preliminary study, we replace the control with a . L
geometric constraint S "
>
— The kite will stay on an 8-based cone centered on O %~ Agfo'_' Ao ) o+ Ag

* Spherical coordinates in the inertial frame Oxyz: 4

06

0 =6, + ABsin(27)

Set of (R, 6, @) s.t. @ = Qo+ Ap sin(1)

R =R(a,1)

— Like a railway track guiding a train 6



Modelling

Coordinates

« State of the system in the 3d space:
* a: 1D position of the tip of the arm (on a circle)

* (R,7): 2D position of the kite (on the 8-based
cone)

Base of the cone

We can do better: get R through the intersection
of a sphere (A, r) with a line

_ —\2
R(a, 1) =f-OA+\/(f-OA) + 12 — QA2

— (a, 1) is enough to determine the state of the system



Modelling

Replacing the control with an algebraic constraint

 How? Add a fictitious force F.ype that would result from a control

 No friction with the cone:
Circle-based cone

——— 90K ——— 90K
Fcone'a_R= 0 and Fcone'Wz 0

https://mathworld.wolfram.com/Cone.html



Modelling

Compute the dynamics

* Dynamics: conservation of linear & angular momentum

* All forces apply at point K (the kite):
* Gravity
* Aerodynamical forces

* Line tension




Modelling
Gravity

* Gravity force = weight of the kite + %Weight of the lines

., 1

Fgrav = -9 (mkite + 2 mlines) Z
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Modelling

Aerodynamical forces
* Apparent wind: W, =¥ —Ww  (velocity — wind)
X Generator--
* Aerodynamical force on the kite
N2 e s .
Faerokite = — ) S pair”Wapp” (CLzy, + Cpxy)

e Aerodynamical force on the lines, applied at point K

1 lel r dl IR TV .
Faero,lines = _E 3 pair”Wapp — (- V)r” Cpi ey

E aero — F aero,Kkite + F. aero,lines
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Modelling

Line tension & conservation of angular momentum

* Conservation of angular momentum of the arm gives:
Ioqit = —torque(a) + Fiension 7 - (2x0A)

———  I,qa—torque(q) , - ) . .
* Hence Fiension = eqf on where @ is obtained by solving the dynamics cf. next slide

Torque from arm to generator
C’max =

' I'tension

torque
I
I
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Modelling

Computing the explicit dynamics

Recall that F.ope -aai: = 0 and F.gpe -aaLTK =0

Conservation of linear momentum gives: m

—

dt

t
(@ 1)

—-— dv
Hence Foone = m dc Fgrav — Faero

Solve A(u) ii = b(u, 1)

= Feone T Fgrav + Fyero * Ftension

t

&
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First Numerical Results
Solving the dynamics

* Assemble A and b using forward auto. diff. for exact, fast & maintainable derivatives

julia> kite speed = jacobian(u -> OK(u, params), u) e du

* RungeKuttab4:

Power generation over time
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— (Cyclic behavior: toward a limit cycle
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First Numerical Results
Limit Cycle

 Define a Poincaré section at T = 0 [2m] where the cycle begins (arbitrary)

* Dense ODE output & continuous callback allow us to save the state every time it crosses one of
these hyperplanes:

lteration | At = t(z = 27) — t(z = 0) (seconds) 2 limit cycles

1 2.7857519406370397 0.50

ey Cle OK <
—=CyCle KO —

2 3.0933710067285087 0.25F
3 3.0930984474625856 % 0.00 |

7 3.093098056921132 —0.50
8 3.0930980569206064 0

— 2 limit cycles, interested in the one with 7 < 0 that does not tangle the lines
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Optimization
Problem: Optimize the Average Power over a limit cycle

* We define the following problem
1 /
t_f a(t) torque(a(t)) dt — max
f 1
0

|
P(t)

Over ((ao, Ao, To, tf),p) € R*xR" with n the number of available parameters to optimize

With constraints:

¢ a(tf) == ao, a(tf) == do, T(tf) - T.O, T(tf) =Tg — 2T
 Box constraints on the state

With final state obtained by the ODE solver

16



Optimization
Augmentations

* Augment ODE state :
« ODE: (a,1,d,7©) = (a,7,¢,7,W) with W being the cumulated work done by the generator

With its associated differential equation W = ¢ torque(c)
« Augment optimization variables: ((ao, day, dty, tr), p) — ((ao, day, dty, tr, Wr), p)

— Maximize Wr/ts over ((ao, day, dty, ty, Wf),p) € R>XR"™ with constraints:

¢ a(tf) =, a(tf) = ao,T(tf) = T.O, T(tf) =T9 — 2T
* The augmented constraint Wy = W (tr)

 Box constraints over the state
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Optimization
Ongoing work

* Gradients and Hessians of the constraints computed with automatic differentiation

* Initialization on the limit cycle, where constraints are satisfied

* Use Interior Point OPTimizer (IPOPT)

— Look for saturated box constraints

— perform a sensitivity analysis around the optimal point

18



Conclusion

e Solve the ODE — find the limit cycle = optimize on the limit cycle, thanks to Julia tools
 Move forward to a controlled model, without the cone constraint

* Have an engineer build a prototype that would (in)validate our results through measurements

K. Desenclos, 2022, Production d’électricité par voile de kite. 19



Annex 1: Basis vectors related to the local wind

* Apparent wind perpendicular to the lines:

. Wapp — (7 - V)T
ew—l

N N

|Wapp — (- V)T

(a) (b)

Kite symmetry
plane

» Basis of the apparent wind:

—

= Wapp
" ”Wapp”
To =7 x &
Zw = Xy X Yy

Trailing

Leading

/ // edge W, Kite lines
. 20




Annex 2: Forward Automatic Differentiation

f(wy,wy) = sin(wq) + wyw;

Y
Define € st. €2 =0

sin(xy) + x1x5 +
A dual number is a + be (x, + cos(xq))er + x1&

Define the base operations:

* (@a+be)+(c+de)=(a+c)+(b+d)e sin(x;) + cos(x;) &
* (a+be)(c+de) =ac+ (ad + bc)s

X1Xy + X081 + X1&

* sin, cos, exp, etc. are defined using +, X, /, etc.

X, + &

 flx+e) = f(x) +ef () 1t &

— See ForwardDiff.jl

w" w2

21



